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Abstract 

Some fifty-odd published examples of corrections from 
(false symmetry) triclinic to (true symmetry) centred 
monoclinic (aP to mC) are analysed to see whether the 
need for correction of symmetry should have been 
obvious to the original investigators. We conclude that 
about two-thirds of the examples were transparent in that 
special features of the dimensions of the reduced triclinic 
cell should have aroused the suspicions of the investi- 
gator. For the other third, calculation of the metric tensor 
would have indicated the possibility of symmetry higher 
than triclinic. However, it should always be remembered 
that the true synunetry of a crystal is revealed by 
intensity rather than by metric relationships, or by other 
techniques such as optical microscopy. 

1. Introduction 

Some fifty-odd crystal structures have been reported in 
which the space group has been corrected from (false 
symmetry) triclinic (aP) to (true symmetry) centred 
monoclinic (mC). In how many of these examples may 
one say (with the benefit of hindsight), that there were 
clear signs of the possible occurrence of higher 
symmetry, which should then have been pursued? We 
wish particularly to consider whether correction could 
have been made at the stage where the unit cell had been 
determined as triclinic, the investigators then having 
proceeded to solve the crystal structure under the 
assumption that this symmetry was correct. This point 
of view is somewhat different from that of previous 
studies, mainly by Marsh, Bauer, Parth6 and co-workers, 
where published structure reports were scrutinized for 
evidence of higher symmetry undetected by the original 
investigators. Thus, we emphasize the analysis of the 
information provided by the measured cell dimensions, 
whereas others have focused attention on relationships 
among atomic coordinates,t which are, of course, not 
available at the stage we are considering. We stress that 

~" Among the computer programs available for checking relationships 
among atomic coordinates are MISSYM (Le Page, 1987), ACCMM 
(Mika, Hauck & Funk-Kath, 1994), PARST (Nardelli, 1995, 1996) and 
BUNYIP (Hester & Hall, 1996). 
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cell dimensions alone do not provide conclusive evidence 
of higher symmetry, but only indications of possible 
existence. Once the omens have been understood it is 
incumbent on the investigator to determine the correct 
symmetry by standard methods, such as the study of 
intensity relations. Also, cell dimensions are potentially 
important indicators because atomic coordinates are now 
often relegated to databases and are not immediately 
available to the reader for checking. Remarkably and 
regrettably, some quite detailed descriptions of crystal 
structures have appeared with coordinates, but without 
mention of cell dimensions and space group (O'Bannon, 
Carroll & Dailey, 1991) or even without cell dimensions, 
space group and coordinates (Birkett et al., 1993). 

2. Background to analysis of database of aP to mC 
space-group corrections 

The material for our analysis originates from the triclinic 
to centred monoclinic corrections reported in the 
literature. Baur & Kassner (1992; BK92) give informa- 
tion on 25 such corrections. Marsh (1995; M95) has 
given an additional 24 and Marsh & Bernal (1995; 
MB95) two more. We added four further examples, two 
(Dunitz & Shearer, 1960; Kapon, Reisner & Marsh, 
1989: KRM89) not included in the Baur-Kassner and 
Marsh surveys, and the others analysed in a companion 
paper (Herbstein & Marsh, 1997; HM97), using 
published data. Some fifty-odd examples are thus 
available for study; we do not give a more precise 
number because some examples fall away for various 
reasons. In Fig. 1 we show a histogram of the years of 
publication of the original (i.e. incorrect) reports; the 
epidemic appears to have peaked some l0 years ago, but 
analysis of its symptoms may help to produce a 
diagnostic to reduce recurrence. 

We give a very brief and incomplete background to 
reduced cells, which were introduced into crystallogra- 
phy by Niggli (1928). Their calculation and application 
to the determination of crystal symmetry were discussed 
by Santoro & Mighell (1970) and Mighell & Rodgers 
(1980). These results were clearly summarized by de 
Wolff (1983; see particularly Table 9.3.1 ) and by Baur & 
Tillmanns (1986; BT86), who give references to earlier 
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work. More recently, the earlier literature has been 
surveyed and put into context by Macicek & Yordanov 
(1992). We shall not repeat this material, but only remind 
the reader that the metric tensor (Niggli matrix) is given 
by [a.h b.b c.c/b.c c.a a.b] (conveniently abbreviated as 
[A B C/D E F]), with standard ordering of  the axes as 
a < b < c. A type (I) triclinic cell is defined as having the 
product T(= DEF) positive, from which it follows that 
two of the opposing cell corners have all angles acute and 
one of  these corners is taken as the origin in the standard 
setting; alternatively, two angles are obtuse and one acute 
for a different choice of axial directions. A type (II) 
triclinic cell is defined as having T zero or negative and it 
follows, as above, that the origin can be chosen at a 
corner with angles 90 ° or obtuse (alternatively, one 
obtuse and two acute). The Niggli reduced cell has a + 
b + c = abs. min. (which defines the Buerger cells) and 
the deviation (D = [In'/2 - a[ + 17r/2 - r[ + > Ire~2 - y]), 
{Icosot I + Icos 31 + I cos Y} and {[cos c~ cos fl cos y[} 
relative maxima among the Buerger cells (Gruber, 1989). 

3. Procedure used for triclinic to centred monoclinic 
corrections 

The procedure followed here for space-group determina- 
tion [cf Fig. 5 of Mighell & Rodgers (1980), the nine 
recommendations of BT86 (p. 110) and the nine 
recommendations of Marsh (1995)] involves taking the 
triclinic unit-cell dimensions as reported and checking 
whether this original cell was reduced. If not, then the 
original cell is transformed to the reduced cell. 
Parenthetically, we note here that BT86 found that 
"~27% of the 297 published triclinic cells in a sample 
investigated by them had not been reduced according to 
the definition of  International Tables for  Crystallography 
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Fig. 1. Number of publications with triclinic unit cells which can be 
transformed to centred monoclinic cells plotted against the year in 
which the publication appeared. 

Table 1. The parameters D, E and F for  the lattice 
characters encountered in this paper, and the trans- 
formation matrices from triclinic, Bravais type aP, to 

centred monoclinic, mC 

This material has been extracted 

No. Type D E 
A = B, no conditions on C 
10 (I) D D 
14 (II) D D 
17 (II) D't" E 
B = C, no conditions on A 
20 (I) D E 
25 (II) D E 
No conditions on A, B and C 
27 (I) D A/2 
28 (I) D A/2 
29 (I) D 2D 
37 (II) D -A/2 
39 (II) D 0 
41 (II) -B/2 E 
43 (II) D~ E 

t2ID+ E + FI = A + B. 
129 + El = B. 

from Table 9.3.1 of ITC83. 

F Transformation 

F 110/!i0/00i 
F 110/110/00 ~ 
F 110/110/101 

E 011/0!i/i00 
F o11/o11/lOO 

A/2 ]20/]00/0]1 
2D 100/102/019 
A/2 100/120/001 

o !921!oo/o19 
-A/2 129/190/901 

0 912/9!9/190 
F 100/112/010 

:~ In addition to 21D + E + FI = A + B, 

(1983, Vol. A; ITC83) or some other definition. We have 
used TRACER (Lawton, 1969), PARST (Nardelli, 1983) 
and BLAF (Version 4.1; Macicek & Yordanov, 1992) for 
cell reduction, but a number of other programs [NEWLAT 
(Mugnoli, 1985), DELOS (Burzlaff & Zimmerman, 
1985), LEPAGE (Spek, 1988) and NIST*LATTICE 
(Karen & Mighell, 1991b)] are available. The metric 
tensor of  the reduced cell was calculated and compared 
with the 44 lattice characters given in Table 9.3.1 of 
ITC83 (de Wolff, 1983) in order to identify whether the 
lattice possibly had symmetry higher than triclinic. The 
transformation matrix to a higher symmetry cell (in this 
paper, specifically a C- or/-centred monoclinic cell) is 
also given in Table 9.3.1; as these corrections have 
generally been published, we only give a reference unless 
discussion is required. For convenience, we have 
excerpted in our Table 1 the forms of the metric tensors, 
lattice characters and transformation matrices needed in 
this paper. We have not checked atomic coordinates for 
conformation to the higher symmetry because this has 
already been done for the published structures considered 
in this paper; however, appraisal of  the atomic coordi- 
nates (when available) is an essential step in investigating 
any suspect structure and has been carried out here 
(or elsewhere) for the structures we correct and/or 
discuss. 

The original cell reported as triclinic was determined 
from photographic or, more usually, diffractometer 
measurements. The latter, on which we concentrate, have 
provided most of  the results discussed here; computer 
analysis of area-detector data will presumably be 
analogous to the use of photographs. The unit cell 
initially obtained from the diffractometer output of  
measurements of  w, 20, X and ~o for (say) 25 reflections 
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will depend, among other factors, on the nature and 
initial orientation of the crystal and the scan ranges used. 
The values obtained for the cell dimensions are subject t~ 
errors (often considerably underestimated by the original 
authors) and this may make it difficult to decide whether 
two cell edges or angles are indeed significantly different, 
or different from special values such as 90 or 120 ° . 
Nevertheless, cell-dimension errors prevented us from 
identifying a lattice character in only one example out of 
fifty-odd. When the triclinic to monoclinic transforma- 
tions are carried out, we deliberately do not initially 
require that ct = y = 90 °, as the deviations give an 
independent assessment of the accuracy of the original 
measurements. A different method of determining metric 
symmetry - that of converse transformation analysis - 
has been developed by Karen & Mighell (1991 a,b) which 
includes the possibility of taking experimental error into 
account; however, we have not used this method during 
the preparation of the present paper. 

Original and reduced cells often have very similar 
dimensions and thus very similar metric tensors. 
However, as has been emphasized many times in the 
past, only the reduced cell is uniquely defined and the 
metric tensor of a non-reduced triclinic cell has no 
significance in the present context. The orientations of 
the axes of original and reduced cells with respect to a 
standard set of axes (for example, the diffractometer 
axes) are different. It is instructive to show the 
geometrical relationships between the original and 
reduced triclinic cells and the ensuing C-centred mono- 
clinic cell and we use published results for methyl 8- 
isopropyl-3,3 a,8,8a-tetrahydroindeno[2,1 -c]pyrazole-8a- 
carboxylate (C15H18N202; CEMBOL; Toupet & 
Messager, 1984; Marsh & Herbstein, 1988) for this 
purpose [details are also entered into (deposited) Table C, 
which is defined belowt]. This is #19 in Table 1 of the 
listing of BK92, whose serial numbers we use for 
identification of the crystals; we have added compound 
names, CDF refcodes and references so that the present 
paper will be self-contained. 

CIsH18N202 was reported to be type (I) triclinic with 
a = 5.791 (4), b = 15.503 (4), c = 15.954 (5)A, ot = 
82.24 (5),/3 = 79.35 (6), y = 79.13 (5) °, P i ,  Z = 4. This 
cell is not reduced, but reduction [transformation matrix 
(100/1 i0/10i)] gives a cell of dimensions a = 5.791, b = 
15.493, c = 15.935 A, ct = 82.34,/3 = 79.72, F = 79.33°, 
which are very close to those of the original cell, but with 
a different orientation. The metric tensor of the reduced 
cell [33.54 240.02 253.92/32.93 16.46 16.61]) could be 
taken to approximate to the form [A B C/A A/2 A/2]. 
However, this does not correspond to any of the reduced 
forms of Table 9.3.1. We therefore try the less restrictive 
form [A B C/D A/2 A/2], which corresponds to lattice 

~" A list of  data for triclinic unit cells has been deposited with the IUCr 
(Reference: CF0002). Copies may be obtained through The Managing 
Editor, International Union of Crystallography, 5 Abbey Square, 
Chester CH 1 2HU, England. 

character #27 for a type (I) cell, with transformation 
matrix ( i20/ i00/0 i l )  from the reduced cell to a C- 
centred monoclinic cell (Table 1). This transformation 
was given by Marsh & Herbstein (1988) from the 
original cell to a cell with a = 30.450, b = 5.791, c = 
20.690/~, c~ = 90.07, /3 = 131.09, y = 90.11 °, Z = 8. 
Multiplication of the two matrices ( i20/ i00/0 i l )  and 
(100/l i0/10i)  gives the present transformation matrix 
from the original to the monoclinic cell as (120/100/011). 
This cell has the same edges as that given by Marsh & 
Herbstein, but with c~ and y acute instead of obtuse. The 
relation between original and reduced triclinic cells is 
shown in Fig. 2, as well as the relation between these two 
cells and the final monoclinic cell. The final monoclinic 
cell is obtained by ascribing the deviations of u and y 
from 90 ° to errors in the original measurements. The 
space group of the monoclinic cell is obtained by analysis 

/ / : ~ ~ / '  

Oil 
(0~1) R 

CH 

~oo 
BH 

00~ 

Fig. 2. The relation between original, reduced and C-centred monoclinic 
cells for CEMBOL (#19). The axes of  the original cell are identified 
by chain ( -  • - • - • - )  lines and indices of lattice points are given 
in terms of this basis as 100 etc. The background framework is drawn 
in terms of the unit cells of the original lattice and also that of the 
reduced cell. The axes of the reduced cell are identified by dashed 
lines and indices of lattice points are given in terms of this basis as an 
or ( 100)R etc. The present monoclinic cell (denoted by An, BH, CH) is 
obtained by applying the transformation matrix (120/100/01 i) to the 
original triclinic cell or the transformation matrix (120/i00/0T1) to 
the reduced cell. The cell given by Marsh & Herbstein (1988) has 
vectors AMH and CMH in opposite directions to AN and CH, while BH 
and BMH coincide. The second group of monoclinic vectors has not 
been shown to avoid overloading the diagram. 
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of  intensities o f  reflections (if  available) or from 
symmetry relations between atomic coordinates. 

4. Analysis of published triclinic to centred monoclinic 
corrections 

We now analyse the fifty-odd published examples o f  
triclinic to centred monoclinic corrections (most P i  to 
C2/c) in terms of  the procedure noted above. We find that 
the reduced cells fall into two 'cadres' .  In the first o f  
these the reduced cell dimensions show special relation- 
ships between pairs o f  parameters,, such as equality to 
two axes or their mutual orthogonality [however, there is 
an additional requirement (see below) for a reduced cell 
with one angle 90 ° to have higher symmetry]. The 
second cadre comprises examples where the reduced cell 
dimensions do not show the special relationships 
between parameters found in cadres (Ia) and (Ib), but 
the metric tensor corresponds to one of  the lattice 
characters o f  Table 9.3.1. The cadres are discussed 
separately; the complete results are given in three 
deposited tables [A (18 entries), B (14 entries) and C 
(18 entries)].t  A typical entry from each of  these 
deposited tables is given for illustration in Table 2. 
Special features are discussed in each section. 

We begin with two reports o f  historical interest. The 
first example of  a triclinic to monoclinic correction that 
we have found (through B/irgi & Dunitz, 1992) is for 
cyclododecane, which was originally described as 
triclinic by Miiller (1933; a = 7.84, b = 5.44, c = 
7.82 A, ot = 81.7, /3 = 64.0, } /=  81.0 °, Z = 1, P i )  and 
corrected to C-centred monoclinic by Dunitz & Shearer 
(1960), their measurements giving a = 13.27 (1), b = 
8.28 (1), c = 5.44 (1) A,/3 = 99.5 (2) °, Z = 2, space group 
C2/m, transformation matrix ( l l 0 / 0 0 1 / l i 0 ) .  Allowing 
for the limited precision of  Miiller's measurements, these 
fit into our Cadre (Ib) (see Table B of  deposited 
material~'). The second concerns the low-temperature 
polymorph of  benzil, which crystallizes in space group 
P3~21 (Z = 3) at room temperature (Brown & Sadanaga, 
1965; Gabe, Le Page, Lee & Barclay, 1981) and 
undergoes a first-order transformation on cooling (Tc = 
83.5 K). The crystal structure o f  the low-temperature 
polymorph was reported as triclinic, with (at 80 K) a = b, 
a =/3, P1, Z = 12. Tolrdano (1979) pointed out that this 
triclinic cell could be transformed into a C-centred 
monoclinic cell with Z = 24. Tolrdano also summarized 
the physical properties favouring a monoclinic cell and 
discussed the physics of  the transformation. More recent 
work (More, Odou & Lefebvre, 1987) has shown that the 
original diffraction patterns were incorrectly interpreted 
because of  transformation-induced twinning and that the 
space group of  the low-temperature phase is monoclinic 
(P2~, Z = 6) and not triclinic. 

? See deposition footnote on p. 970. 

Table 2. A single example is given for  each cadre 

The cell type is not given explicitly as it can be inferred from the value 
of T (= DEF). Type (I) T > 0; type (II) T < 0. 

Cadre (Ia). Data for triclinic unit cells where the reduced cell has one 
angle = 90 ° and (edgel)/{2(edge2)} = [cos(included angle)[. 

The example is CEMBOL (#13), with dimensions of the reduced 
triclinic cell as a=6.897(3), b =  12.016(4), c=22.537(6)~,, 

= 104.92(3), /3 = 89.96(3), y = 106.62(3) ° [note that /3 is set to 
90 ° (see text) and the cell is type (II); however, we give here the value 
of/3 as reported]. The metric tensor (in the form A B C/D E F) is 47.57 
144.38 507.92/69.63 0 23.70. lared/2bredl =0.28700; COSy= 
--0.28602. The lattice character is #39 and the transformation to 
centred monoclinic has been discussed by MS79 and BT86. 

Cadre (Ib). The reduced cell has two equal cell edges and two equal 
angles. 

The example is DOBKOU (#84), with dimensions of the reduced 
triclinic cell as a = 7.587(2), b = 14.239(5), c = 14.274 (5) ~, 
a =  110.07(2), /3= 91.30(2), y=91.39(2) ° (we assume here that 
b = c, despite the difference of 5u in their values, and that /3 = y, 
despite the difference of 3u). The lattice character is #25; the 
transformation to centred monoclinic is given by Schaefer (1986). 

Cadre ([I). Data for reduced triclinic unit cells which do not show the 
special features of cadres (Ia) and (Ib), but the metric tensor 
corresponds to a lattice character in Table 9.3.1 of ITC83. 

The example is K[B(SO3CI)4], with dimensions of the original cell 
as a = 10.513(9), b = 10.838(7), c = 10.965(11)tk, ot = 99.21 (3), 
13 = 135.48 (3), y = 97.15(3y. The reduced cell has a = 8.147 (41), 
b = 10.513 (9), c = 10.836 (49)A, a = 82.87 (18), /3 = 67.93 (53), 
y = 70.68 (19) °, and is type (I). The metric tensor (in the form 
ABC/DEF) is 66.37 110.52 117.43/14.14 33.17 28.34; hence, we 
have A B C/D A/22D and the lattice character is #28. 

4.1. Cadre (I): special features in the dimensions o f  the 
reduced cell 

The criteria for 'special '  are: 
Cadre (Ia): one angle = 90 ° and (edgel)/{2(edge2)} = 

Icos(included angle)[. 
Cadre (Ib): equality of  two cell edges and of  two 

angles (e.g. a,a,c,ot,ot,y). 
We have highlighted the special features below. 
4.1.1. Cadre (Ia)." the reduced cell has one angle = 90 ° 

and (edgel)/{2(edge2)} = ~cos(included angle)/. When 
the reduced cell has two mutually orthogonal axes the 
cell is type (II) [see p. 739 of  ITC83, condition 4(c)]; this 
gives the metric tensor o f  the reduced cell with the form 
[A B C/D 0 A/2] [condition 5(e)] when /3 = 90 °. The 
lattice character is #39. It is i l luminating to use a simple 
graphical solution based on the orthogonality o f  two of  
the axes. I f  there is a transformation to a C-centred 
monoclinic cell, then one o f  the two orthogonal axes 
must be the monoclinic b axis. If  [ared[  = [Bmond then areal~ 
2bred = [COS y[ (analogous expressions can be set up for 
the other alternative and for other choices o f  axes). I f  this 
solution holds, then the transformation matrix from the 

_ _  

reduced cell to the axes of  the monoclinic cell is (120/ 
i00/00i). We discuss #13 in some detail (see Fig. 3) and 
then point out similarities found in the other examples. 
Finally, in this cadre we note examples where equalities 
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between cell edges or values of  60 ° for angles can 
introduce additional complications. 

#13: [(3,9-dimethyl-4,8-diaza-3,8-undecadiene-2,10- 
dione dioximato)copper(II) perchlorate hemi(methanol); 
AEIBCU] was reported in a type (II) triclinic cell with 
a = 6.897 (3), b = 12.023 (4), c = 22.647 (6)A, ot = 
100.81 (3), fl = 98.69 (3), F = 106.73 (3) °, P i ,  Z = 4 
(Bertrand, Smith & Vanderveer, 1977). Reduction of the 
cell gives a = 6.897 (3), b = 12.016 (4), c = 22.537 (6) A, 
ot = 104.92(3), fl = 89.96(3), F = 106.62 (3) ° 
(transformed to type (II) cell, but we have deliberately 
not set fl = 90 ° in the list of  cell dimensions). Now 6.897/ 
(2 × 12.016)-- 0.28700 = cos 73.32 °, i.e. area/2brea = 
Icos ?'[ and transformation to C-centred monoclinic can 
be made as shown in Fig. 3. Marsh & Schomaker (1979) 
obtained the C-centred monoclinic cell with AM = 23.028, 
BM = 6.897, CM = 22.537/~, o~ = 90.04, fl = 105.57, F = 
90.06 °, C2/c, Z = 8. Marsh & Schomaker (1979) 
remarked that 'the reported cell dimensions provide no 
clear clue, and discovery of the monoclinic lattice would 
have required systematic search for orthogonal axes'. We 
comment that calculation of the metric tensor for the 
reduced cell gives the orthogonal axes sought. 

[NEt4]4[Ni6(r/2-/z6-In2Br5)2(CO)lo].MeaCO: This clus- 
ter compound has been discussed by MB95. The reduced 
cell has a = 13.174, b = 13.198, c = 26.485/~, ct = 75.72, 
/3 = 88.95, F = 60.22° (error estimates deliberately 
omitted; Z = 2), and the metric tensor is 173.56 174.19 
701.47/86.20 6.39 86.35, which approximates to 
A A C / A / 2  EA/2 ;  this 'reduced form' does not appear in 
Table 9.3.1. The reported cell dimensions thus indicate 
that the crystals are triclinic; however, the atomic 

a /---  'S R = 106.62%--" 

. . . . . . . .  

t !  ' , ! . cM 
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Fig. 3. This diagram illustrates the relationships found in cadre (Ia). The 
origin and axes of the reduced cell of AEIBCU (#13) are denoted by 
On, an etc. and broken lines. The origin and axes of the monoclinic 
cell derived here are shown by lull lines and OM, AM etc. The centnng 
in the C plane is also shown. The origins of reduced and monoclinic 
cells have been separated for convenience. 

coordinates of  the two purportedly independent units 
(I) and (II) are related by x I -- 1/2 - Xn; z I - 1/2 = zii. 
The transformation programs are apparently quite fault- 
tolerant as MB95 obtained a C-centred monoclinic cell 
without difficulty, a result confirmed now by BLAF 
MB95 commented 'large errors in the measured cell 
dimensions - several times larger than the indicated 
precisions - presumably led the authors to assume a 
triclinic rather than a monoclinic unit cell, whereas the 
structure obeys monoclinic symmetry well within the 
e.s.d.'s of  the coordinates'. This is the only example we 
have found where the (measured) metric tensor did not 
lead to a clear conclusion; it is not included in the 
deposited tables. 

MATCCU-02 (#40) and GAKKOS (#41): We treat 
these two examples together. The cell reported for 
tetramethylammonium trichlorocuprate at 323 K (#40) 
was triclinic, but not reduced (Willett, Bond, Haije, 
Soonieus & Maaskant, 1988). The reduced cell obtained 
using BLAF has a metric tensor of the form 
[14 B B /B /2  E 0] (Table At),  which does not correspond 
to any of the lattice characters of  Table 9.3.1. The cell 
reported for polymorph B of bis(2,2'-bis-2-thiazoline)- 
bis(thiocyanato)iron(II), Fe(C6H8N2S2)2 (NCS)2 (#41), 
was triclinic but not reduced (Ozarowski, McGarvey, 
Sarkar & Drake, 1988). The reduced cell obtained using 
BLAF has a metric tensor of the form [A B B /B /2  E 0] 
(Table A), which does not correspond to any of the 
reduced forms of  Table 9.3.1. 

Marsh (1988) commented that in both #40 and 41 'the 
original triclinic cells show three coplanar lattice vectors 

- [100], [010] and [110] - that are equal in length and 
subtend angles of  120 ° (within experimental error). It is 
probable that this coincidence caused difficulties in the 
computer-directed cell reduction process'. Marsh (1988) 
derived C-centred monoclinic unit cells for both 
compounds. 

The reduced cells obtained above for #40 and #4 1 are 
analogous (apart from nomenclature of the axes), with 
each having two mutually orthogonal axes. We take #40 
as an example. Either [010] or [001] of the reduced cell 
can be the unique monoclinic axis (both bred/2Crea and 
Cred/2bred "~ COS60°), with a trial showing that the first of  
these is correct. The bc plane of the direct lattice was 
checked for possible orthogonal axes and C-centring and 
a monoclinic cell obtained which agreed with that given 
by Marsh. It was the unusual relations among atomic 
coordinates that prompted Marsh to study these two 
compounds; we note that the unusual values of the cell 
parameters (two equal cell edges, two mutually orthogo- 
nal axes) should have provided 'hints of trouble'. 
However, the fundamental property in each of these 
examples is the orthogonality of two axes and the cosine 
relation noted above, with equality of two axes serving 
only to complicate the situation. 

t See deposition footnote on p. 970. 
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4.1.2. Cadre (lb) (equality o f  two cell edges and two 
angles). The general treatment for conventionally ordered 
(a < b < c) reduced cells with dimensions a,a,c,ot,ot,g/is 
illustrated. As noted in BT86 (and elsewhere), the 
equality of two cell edges immediately suggests a centred 
cell and these examples can be solved graphically in a 
simple manner. The metric tensors have the form 
[AA C/DDF].  If the cell is type (I), then the lattice 
character is #10 and the transformation matrix to a C- 
centred monoclinic cell is (110/li0/00i);  if the cell is 
type (II), then the lattice character is #14 and the 
transformation matrix to a C-cenh'ed monoclinic cell is 
(110/il0/001). We show the second situation in Fig. 4 
and discuss some examples below; crystals belonging to 
cadre (Ib) are listed in Table B (deposited).~" 

DOBKOU (#84): The triclinic cell of the tctramcric 
copper cluster bis(p-toluidine)bis(acetonitrile)tetraiodo- 
copper was reduced after reorienting the reported cell 
(Rath, Holt & Tanimura, 1985). Schaefer (1986) has 
given the transformation matrix from the original cell to 
a C-centred monoclinic cell and shown that systematic 
absences and relationships between pairs of coordinates 
are compatible with the space group C2/c. This 
monoclinic cell is essentially isomorphous with that 
reported for the tetrameric copper cluster bis(p-chloro- 
aniline)bis(acetonitrile)tetraiodocopper by Rath, Holt & 
Tanimura (1985), thus showing, in common with many 
other examples, that replacement of methyl by chloro has 
only a minor effect on the crystal structure. 

ot-NaSbS2 (#206) was reported (Kanishcheva, 
Kuznetsov & Batog, 1979) as having a reduced triclinic 

~1o / qS ,  
=B M 

-~ See deposition footnote on p. 970. 

I10=AM 

a R 

Fig. 4. A diagram of two conjoined reduced unit cells with a < b < c 
and dimensions a,a,c,ct,c~,y 0 / obtuse) are shown, the axes being 
designated by aR.bR, CR [(NHn)2Ce(PO3)5 (#6) is used for illustration; 
see BT86 for discussion]. The axes (AM etc.) of the corresponding C- 
centred monoclinic cell are shown emphasized, with indices of lattice 
points given in terms of the reduced cell. 

cell (Table B). The metric tensor ([33.97 33.93 46.69/ 
-15.86 -15.85 -0.04])  has the form [AAC/DDF] ,  
where F is indistinguishable from zero. However, bred/ 
2Cred = 0.42624, while cos ot = -0.39843. Thus, the 
condition for C-centring described above in cadre (Ia) is 
not fulfilled and it is coincidental that F is so close to 
zero. The lattice character is #14. A monoclinic cell was 
reported in an almost simultaneous publication (Olivier- 
Foucade, Phillipot & Maurin, 1978) and this has a = 
8.232 (3), b = 8.252 (7), c = 6.836 (3) A, ot = 90.00 (1), 
/3 = 124.28 (2), y = 90.00 (3) °, C2/c, Z = 4. This example 
has also been discussed by Cenzual, Gelato, Penzo & 
Parth6 (1991). A similar example is provided by 
FEBMUU [disodium(#2-oxo)bis(/za-xanthoperine - 
N,O,O')-bis(dioxomolybdenum) dimethyl sulfoxide tetra- 
hydrofuran solvate (Burgmayer & Stiefel, 1986); note 
that the space group of the triclinic cell is misprinted as 
P i  instead of P1 in Table 1 of M95]. In &ese examples 
the decisive feature is the pairwise equality of two edges 
and two angles [cadre (Ib)] and not the mutual near- 
orthogonality of the a and b axes [cadre (Ia)]. A 
particularly interesting example is KAsSe2 (KRM89), 
because the metric tensor of the reduced cell has the form 
AACDDF and fulfils the conditions for lattice character 
16 (transformation to F-centred orthorhombic), which 
include those for lattice character 14 (transformation to 
C-centred monoclinic). This situation was noted by 
KRM89 who commented that 'no symmetry element 
appropriate to an orthorhombic space group is present', 
and transformed cell and coordinates to C-centred 
monoclinic. 

4.1.3. Cadre (II): triclinic unit cells which do not show 
the special features o f  cadres (Ia) and (Ib) in the reduced 
cell dimensions but the metric tensor corresponds to a 
reduced form in Table 9.3.1 o f  lTC83. Silver trimetapho- 
sphate trihydrate (#2) - the crystals are described as 
triclinic, with original cell dimensions a = 7.800 (5), b = 
7.796(5), c = 9.276 (5) A, ot = 115.15(5), /3 = 
115.15 (5), ~' = 88.93 (5) °, P i ,  Z = 2 (Bagieu-Beucher, 
Durif & Guitel, 1975); this cell is not reduced and is 
therefore not included in cadre (Ib), despite the equality 
of a pair of edges and a pair of angles. The correction to 
I2/m via the reduced cell (which retains equal axes but 
not equal angles) has been discussed in detail by BT86. 
The C-centred monoclinic cell has a = 11.13, b = 10.92, 
c = 9.276 A, ot = 90.0,/3 = 126.5, ?' = 90.0 °, Z = 4. 

K[B(SO3C1)4] (#38) was reported (Mairesse & Drache, 
1978) in a type (II) triclinic cell which was not reduced. 
The non-centrosymmetric space group P1 was chosen 
after statistical analysis of the intensity distribution; 
nevertheless, it was noted that the 'two independent 
anions are mirror images of each other'. Correction to Cc 
has been made by Marsh & Schomaker (1980). The 
crystal data are given in Table 2 and Table C 
(deposited)A 

t See deposition footnote on p. 970. 
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HAGPAG (x). 2-Acetylmethylidene-3-(2,4-dibromo- 
phenyl)-5-phenyl-2,3-dihydro- 1,3,4-thiadiazole (CITH12- 
BrzN2Os) has been reported in a triclinic non-reduced 
cell with two molecules (A,B) in the asymmetric unit 
(Pandya et al., 1993). The reduced cell is given in Table 
C (deposited) and can be transformed (M95) into a cell 
with a = 22.108, b = 13.429, c = 16.018 A, ot = 90.02, 
/3 = 133.09, y = 89.97 °. Pandya et al. (1993) remarked 
'...We checked carefully for higher synunetry..., espe- 
cially since there is a pseudo-monoclinic C-centred cell 
that can be derived from the triclinic cell. However, 
nominally equivalent reflections in the monoclinic cell 
did not have the same intensity and the final structure 
showed that molecules A and B are not related by a 
monoclinic symmetry element'. We show in an accom- 
panying paper (HM97) that HAGPAG does have 
monoclinic symmetry, as judged from relations among 
(triclinic) structure factors and atomic coordinates. 

5. Discussion and conclusions 

A current mantra reminds one that apparent metrical 
symmetry must be validated by other means, such as 
intensity relationships. We have encountered one exam- 
ple of a crystal that is metrically centred monoclinic, but 
actually triclinic; this is the triclinic polymorph of 
Li4P207 (Daidouh, Veiga, Pico & Martinez-Ripoli, 
1997), where the authors drew attention to a pseudo- 
monoclinic centred cell. This polymorph fits into our 
cadre (Ia) with /3red = 90.01 °, ared/2bred = 0.36488, 
]cos ~'real = 0.36397. We have encountered three exam- 
pies of metrically orthorhombic cells which are actually 
monoclinic [C16H27H403S+.NO3 (BT86), KAsSe2 
(KRM89) and JOGRUS (M95; also discussed by 
HM97)]. It is also worth noting that the real symmetry 
of an (apparently) single crystal can often only be 
revealed by optical means (Kahr & MacBride, 1992). 

The examples analysed above fall into two cadres - 
those which have been found to have special features in 
the dimensions of the reduced triclinic cell [cadres (Ia) 
and (Ib)] and those without such special features, but 
with a metric tensor corresponding to one of the entries 
of Table 9.3.1 [cadre (II)]. We conclude, with the benefit 
of hindsight, that the need to investigate the possibility of 
higher symmetry should have been apparent for the 
crystals in cadre (I). However, suspicions about the 
possibility of higher synlmetry should also have been 
aroused for the crystals in cadre (II) after cell reduction 
and calculation of the metric tensor. Clearly, calclalation 
of the metric tensor is an essential step as soon as the cell 
dimensions have been measured during a crystal 
structure investigation. Remarkably, this has not always 
been done when the triclinic to monoclinic correction has 
been made for published structures, even though such a 
recommendation is of long standing in the literature. 
Here, however, the investigator also has the opportunity 

to search for special relationships among coordinates of 
atoms purportedly unrelated by crystallographic symme- 
try and this strategy has the advantage, as R. E. Marsh 
has so often emphasized, that it relies on the overall 
symmetry of the structure rather than on cell dimensions 
determined from a few (perhaps too few) arbitrarily 
chosen reflections. 
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